744 research outputs found

    Experimental analysis of the Strato-rotational Instability in a cylindrical Couette flow

    Full text link
    This study is devoted to the experimental analysis of the Strato-rotational Instability (SRI). This instability affects the classical cylindrical Couette flow when the fluid is stably stratified in the axial direction. In agreement with recent theoretical and numerical analyses, we describe for the first time in detail the destabilization of the stratified flow below the Rayleigh line (i.e. the stability threshold without stratification). We confirm that the unstable modes of the SRI are non axisymmetric, oscillatory, and take place as soon as the azimuthal linear velocity decreases along the radial direction. This new instability is relevant for accretion disks.Comment: 4 pages, 4 figures. PRL in press 200

    Stratorotational instability in Taylor-Couette flow heated from above

    Full text link
    We investigate the instability and nonlinear saturation of temperature-stratified Taylor-Couette flows in a finite height cylindrical gap and calculate angular-momentum transport in the nonlinear regime. The model is based on an incompressible fluid in Boussinesq approximation with a positive axial temperature gradient applied. While both ingredients itself, the differential rotation as well as the stratification due to the temperature gradient, are stable, together the system becomes subject of the stratorotational instability and nonaxisymmetric flow pattern evolve. This flow configuration transports angular momentum outwards and will therefor be relevant for astrophysical applications. The belonging viscosity α\alpha coefficient is of the order of unity if the results are adapted to the size of an accretion disc. The strength of the stratification, the fluids Prandtl number and the boundary conditions applied in the simulations are well-suited too for a laboratory experiment using water and a small temperature gradient below five Kelvin. With such a rather easy realizable set-up the SRI and its angular momentum transport could be measured in an experiment.Comment: 10 pages, 6 figures, revised version appeared in J. Fluid Mech. (2009), vol. 623, pp. 375--38

    An Agent-Based Simulation for Water Sharing Between Different Users

    Get PDF
    Water sharing has become a serious problem in France. One of the objectives of 1992 and 2000 directives proposed by the European Union was to reduce both the frequency and the extent of water conflicts through the establishment of multilateral negotiations, where different public and private interests can be represented in a structured institutional environment. In France, many negotiations take place at local level between farmers, water supplies, public services and environmental lists to allocate water resources between users. We suggest that Agent-Based Modelling (ABM) using a multi-agent approach could help negotiations between different players by showing the consequences of water allocation rules and taking in consideration the players' respective attitudes and their ability to change their behaviour.Multiagent-based simulation, user and agent modelling, conflict resolution and negotiation, irrigation application, Resource /Energy Economics and Policy,

    Tidal instability in a rotating and differentially heated ellipsoidal shell

    Full text link
    The stability of a rotating flow in a triaxial ellipsoidal shell with an imposed temperature difference between inner and outer boundaries is studied numerically. We demonstrate that (i) a stable temperature field encourages the tidal instability, (ii) the tidal instability can grow on a convective flow, which confirms its relevance to geo- and astrophysical contexts and (iii) its growth rate decreases when the intensity of convection increases. Simple scaling laws characterizing the evolution of the heat flux based on a competition between viscous and thermal boundary layers are derived analytically and verified numerically. Our results confirm that thermal and tidal effects have to be simultaneously taken into account when studying geophysical and astrophysical flows

    Libration driven elliptical instability

    Full text link
    The elliptical instability is a generic instability which takes place in any rotating flow whose streamlines are elliptically deformed. Up to now, it has been widely studied in the case of a constant, non-zero differential rotation between the fluid and the elliptical distortion with applications in turbulence, aeronautics, planetology and astrophysics. In this letter, we extend previous analytical studies and report the first numerical and experimental evidence that elliptical instability can also be driven by libration, i.e. periodic oscillations of the differential rotation between the fluid and the elliptical distortion, with a zero mean value. Our results suggest that intermittent, space-filling turbulence due to this instability can exist in the liquid cores and sub-surface oceans of so-called synchronized planets and moons

    Метафора як когнітивний механізм номінації та її роль у мовній картині світу

    Get PDF
    Лексические единицы, образованные путем метафоризации, исследуются с точки зрения когнитивной лингвистики как языковые репрезентации продуктов концептуализации и категоризации социокультурной действительности сознанием человека. Объект исследования проанализирован в границах антропоцентричной парадигмы с применением компонентного, семантического и концептуального анализа.Важливим чинником актуальності дослідження є виявлення особливостей лінгвокреативної діяльності людини, відображення її сучасного світобачення, що проявляється у вербалізації та категоризації набутого нею досвіду і знань про навколишню дійсність. Вивчення когнітивних механізмів номінації, а саме процесів метафоризації з точки зору когнітивної лінгвістики, є актуальним аспектом вивчення мовного матеріалу. Застосований в роботі когнітивний підхід до вивчення процесів метафоризації дозволив прослідкувати процес формування нового значення слова, встановити ті фрагменти знань і досвіду людини, які отримали своє позначення в актах номінації за допомогою семантичної деривації.The semantic derivation is the main object of the article. The research of metaphor from the point of view of cognitive linguistics is actual in modern scientific linguistic schools. The research focuses on cognitive mechanisms of new words coinage, on their correlation with cognitive structures, on verbalization of relevant cognitive structures. The emphasis is laid upon the metaphor as a cognitive mechanism of nomination. The method of the conceptual analysis and componential analysis are the major methods of the research

    Solidification of a binary alloy: finite-element, single-domain simulation and new benchmark solutions

    No full text
    A finite-element simulation of binary alloy solidification based on a single-domain formulation is presented and tested. Resolution of phase change is first checked by comparison with the analytical results of Worster (1986) for purely diffusive solidification. Fluid dynamical processes without phase change are then tested by comparison with previous numerical studies of thermal convection in a pure fluid (de Vahl Davis 1983, Mayne et al. 2000, Wan et al. 2001), in a porous medium with a constant porosity (Lauriat & Prasad 1989, Ni et al. 1997) and in a mixed liquid-porous medium with a spatially variable porosity (Ni et al. 1997, Zabaras & Samanta 2004). Finally, new benchmark solutions for simultaneous flow through both fluid and porous domains and for convective solidification processes are presented, based on the similarity solutions in corner-flow geometries recently obtained by Le Bars & Worster (2006). Good agreement is found for all tests, hence validating our physical and numerical methods. More generally, the computations presented here could now be considered as standard and reliable analytical benchmarks for numerical simulations, specifically and independently testing the different processes underlying binary alloy solidification

    Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification

    No full text
    The single-domain, Darcy-Brinkman model is applied to some analytically tractable flows through adjacent porous and pure-fluid domains and is compared systematically with the multiple-domain, Stokes-Darcy model. In particular, we focus on the interaction between flow and solidification within the mushy layer during binary alloy solidification in a corner flow and on the effects of the chosen mathematical description on the resulting macrosegregation patterns. Large-scale results provided by the multiple-domain formulation depend strongly on the microscopic interfacial conditions. No satisfactory agreement between the single- and multiple-domain approaches is obtained when using previously suggested conditions written directly at the interface between the liquid and the porous medium. Rather, we define a viscous transition zone inside the porous domain, where Stokes equation still applies, and we impose continuity of pressure and velocities across it. This new condition provides good agreement between the two formulations of solidification problems when there is a continuous variation of porosity across the interface between a partially solidified region (mushy zone) and the melt

    Experimental study of internal wave generation by convection in water

    Full text link
    We experimentally investigate the dynamics of water cooled from below at 0^oC and heated from above. Taking advantage of the unusual property that water's density maximum is at about 4^oC, this set-up allows us to simulate in the laboratory a turbulent convective layer adjacent to a stably stratified layer, which is representative of atmospheric and stellar conditions. High precision temperature and velocity measurements are described, with a special focus on the convectively excited internal waves propagating in the stratified zone. Most of the convective energy is at low frequency, and corresponding waves are localized to the vicinity of the interface. However, we show that some energy radiates far from the interface, carried by shorter horizontal wavelength, higher frequency waves. Our data suggest that the internal wave field is passively excited by the convective fluctuations, and the wave propagation is correctly described by the dissipative linear wave theory
    corecore